Publication

Individual Patterns of Abnormality in Resting-State Functional Connectivity Reveal Two Data-Driven PTSD Subgroups

Citation:
American Journal of Psychiatry. 2020 Mar 1;177(3):244-253. doi: 10.1176/appi.ajp.2019.19010060. Epub 2019 Dec 16. Erratum in: Am J Psychiatry. 2020 Mar 1;177(3):272.
Authored By:
Maron-Katz A, Zhang Y, Narayan M, Wu W, Toll RT, Naparstek S, De Los Angeles C, Longwell P, Shpigel E, Newman J, Abu-Amara D, Marmar C, Etkin A.
Abstract:
Objective: A major challenge in understanding and treating posttraumatic stress disorder (PTSD) is its clinical heterogeneity, which is likely determined by various neurobiological perturbations. This heterogeneity likely also reduces the effectiveness of standard group comparison approaches. The authors tested whether a statistical approach aimed at identifying individual-level neuroimaging abnormalities that are more prevalent in case subjects than in control subjects could reveal new clinically meaningful insights into the heterogeneity of PTSD. Methods: Resting-state functional MRI data were recorded from 87 unmedicated PTSD case subjects and 105 war zone-exposed healthy control subjects. Abnormalities were modeled using tolerance intervals, which referenced the distribution of healthy control subjects as the “normative population.” Out-of-norm functional connectivity values were examined for enrichment in cases and then used in a clustering analysis to identify biologically defined PTSD subgroups based on their abnormality profiles. Results: The authors identified two subgroups among PTSD cases, each with a distinct pattern of functional connectivity abnormalities with respect to healthy control subjects. Subgroups differed clinically on levels of reexperiencing symptoms and improved case-control discriminability and were detectable using independently recorded resting-state EEG data. Conclusions: The results provide proof of concept for the utility of abnormality-based approaches for studying heterogeneity within clinical populations. Such approaches, applied not only to neuroimaging data, may allow detection of subpopulations with distinct biological signatures so that further clinical and mechanistic investigations can be focused on more biologically homogeneous subgroups.
Published in:
The American Journal of Psychiatry

More Publications

August 1, 2023

Journal of Psychopharmacology

Improving Translational Relevance in Preclinical Psychopharmacology (iTRIPP)

July 6, 2023

Gerontology and Geriatric Medicine

Caring for Dementia Caregivers: Understanding Caregiver Stress During the COVID-19 Pandemic

May 19, 2023

Nature Reviews Neurology

Global synergistic actions to improve brain health for human development

April 20, 2023

Nature Mental Health

Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

February 21, 2023

Translational Psychiatry

Screening for PTSD and TBI in Veterans using Routine Clinical Laboratory Blood Tests

February 13, 2023

Frontiers in Aging Neuroscience

Machine learning within the Parkinson’s progression markers initiative: Review of the current state of affairs