Publication

Molecular Genetic Overlap Between Posttraumatic Stress Disorder and Sleep Phenotypes

Citation:
Sleep 2020; 43(4): April 2020, zsz257, https://doi.org/10.1093/sleep/zsz257
Authored By:
Mackenzie J Lind, Leslie A Brick, Philip R Gehrman, Laramie E Duncan, Bizu Gelaye, Adam X Maihofer, Caroline M Nievergelt, Nicole R Nugent, Murray B Stein, Ananda B Amstadter, Psychiatric Genomics Consortium Posttraumatic Stress Disorder
Abstract:
Sleep problems are common, serving as both a predictor and symptom of posttraumatic stress disorder (PTSD), with these bidirectional relationships well established in the literature. While both sleep phenotypes and PTSD are moderately heritable, there has been a paucity of investigation into potential genetic overlap between sleep and PTSD. Here, we estimate genetic correlations between multiple sleep phenotypes (including insomnia symptoms, sleep duration, daytime sleepiness, and chronotype) and PTSD, using results from the largest genome-wide association study (GWAS) to date of PTSD, as well as publicly available GWAS results for sleep phenotypes within UK Biobank data (23 variations, encompassing four main phenotypes). Methods Genetic correlations were estimated utilizing linkage disequilibrium score regression (LDSC), an approach that uses GWAS summary statistics to compute genetic correlations across traits, and Mendelian randomization (MR) analyses were conducted to follow up on significant correlations. Results Significant, moderate genetic correlations were found between insomnia symptoms (rg range 0.36–0.49), oversleeping (rg range 0.32–0.44), undersleeping (rg range 0.48–0.49), and PTSD. In contrast, there were mixed results for continuous sleep duration and daytime sleepiness phenotypes, and chronotype was not correlated with PTSD. MR analyses did not provide evidence for casual effects of sleep phenotypes on PTSD. Conclusion Sleep phenotypes, particularly insomnia symptoms and extremes of sleep duration, have shared genetic etiology with PTSD, but causal relationships were not identified. This highlights the importance of further investigation into the overlapping influences on these phenotypes as sample sizes increase and new methods to investigate directionality and causality become available.
Published in:
Sleep

More Publications

May 19, 2023

Nature Reviews Neurology

Global synergistic actions to improve brain health for human development

April 20, 2023

Nature Mental Health

Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

February 13, 2023

Frontiers in Aging Neuroscience

Machine learning within the Parkinson’s progression markers initiative: Review of the current state of affairs

September 9, 2022

Sensors

Deep Learning for Daily Monitoring of Parkinson’s Disease Outside the Clinic Using Wearable Sensors

June 1, 2022

JAMA Network Open

Association of Posttraumatic Stress Disorder With Accelerated Cognitive Decline in Middle-aged Women

March 23, 2022

Journal of Neurotrauma

A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury