Publication

Prevalence of Cerebral Microhemorrhage following Chronic Blast-Related Mild Traumatic Brain Injury in Military Service Members Using Susceptibility-Weighted MRI

Citation:
AJNR American Journal of Neuroradiology. 2018 Jul;39(7):1222-1225. doi: 10.3174/ajnr.A5688. Epub 2018 May 24. PMID: 29794235
Authored By:
Lotan E, Morley C, Newman J, Qian M, Abu-Amara D, Marmar C, Lui YW.
Abstract:
Background and purpose: Cerebral microhemorrhages are a known marker of mild traumatic brain injury. Blast-related mild traumatic brain injury relates to a propagating pressure wave, and there is evidence that the mechanism of injury in blast-related mild traumatic brain injury may be different from that in blunt head trauma. Two recent reports in mixed cohorts of blunt and blast-related traumatic brain injury in military personnel suggest that the prevalence of cerebral microhemorrhages is lower than in civilian head injury. In this study, we aimed to characterize the prevalence of cerebral microhemorrhages in military service members specifically with chronic blast-related mild traumatic brain injury. Materials and methods: Participants were prospectively recruited and underwent 3T MR imaging. Susceptibility-weighted images were assessed by 2 neuroradiologists independently for the presence of cerebral microhemorrhages. Results: Our cohort included 146 veterans (132 men) who experienced remote blast-related mild traumatic brain injury (mean, 9.4 years; median, 9 years after injury). Twenty-one (14.4%) reported loss of consciousness for 2 episodes. No cerebral microhemorrhages were identified in any subject, as opposed to the frequency of SWI-detectable cerebral microhemorrhages following blunt-related mild traumatic brain injury in the civilian population, which has been reported to be as high as 28% in the acute and subacute stages. Conclusions: Our results may reflect differences in pathophysiology and the mechanism of injury between blast- and blunt-related mild traumatic brain injury. Additionally, the chronicity of injury may play a role in the detection of cerebral microhemorrhages.
Published in:
American Journal of Neuroradiology

More Publications

May 19, 2023

Nature Reviews Neurology

Global synergistic actions to improve brain health for human development

April 20, 2023

Nature Mental Health

Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

February 13, 2023

Frontiers in Aging Neuroscience

Machine learning within the Parkinson’s progression markers initiative: Review of the current state of affairs

September 9, 2022

Sensors

Deep Learning for Daily Monitoring of Parkinson’s Disease Outside the Clinic Using Wearable Sensors

June 1, 2022

JAMA Network Open

Association of Posttraumatic Stress Disorder With Accelerated Cognitive Decline in Middle-aged Women

March 23, 2022

Journal of Neurotrauma

A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury