Publication

Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder

Citation:
Science Translational Medicine. 2019 Apr 3;11(486):eaal3236. doi: 10.1126/scitranslmed.aal3236.
Authored By:
Etkin A, Maron-Katz A, Wu W, Fonzo GA, Huemer J, Vértes PE, Patenaude B, Richiardi J, Goodkind MS, Keller CJ, Ramos-Cejudo J, Zaiko YV, Peng KK, Shpigel E, Longwell P, Toll RT, Thompson A, Zack S, Gonzalez B, Edelstein R, Chen J, Akingbade I, Weiss E, Hart R, Mann S, Durkin K, Baete SH, Boada FE, Genfi A, Autea J, Newman J, Oathes DJ, Lindley SE, Abu-Amara D, Arnow BA, Crossley N, Hallmayer J, Fossati S, Rothbaum BO, Marmar CR, Bullmore ET, O’Hara R.
Abstract:
A mechanistic understanding of the pathology of psychiatric disorders has been hampered by extensive heterogeneity in biology, symptoms, and behavior within diagnostic categories that are defined subjectively. We investigated whether leveraging individual differences in information-processing impairments in patients with post-traumatic stress disorder (PTSD) could reveal phenotypes within the disorder. We found that a subgroup of patients with PTSD from two independent cohorts displayed both aberrant functional connectivity within the ventral attention network (VAN) as revealed by functional magnetic resonance imaging (fMRI) neuroimaging and impaired verbal memory on a word list learning task. This combined phenotype was not associated with differences in symptoms or comorbidities, but nonetheless could be used to predict a poor response to psychotherapy, the best-validated treatment for PTSD. Using concurrent focal noninvasive transcranial magnetic stimulation and electroencephalography, we then identified alterations in neural signal flow in the VAN that were evoked by direct stimulation of that network. These alterations were associated with individual differences in functional fMRI connectivity within the VAN. Our findings define specific neurobiological mechanisms in a subgroup of patients with PTSD that could contribute to the poor response to psychotherapy.
Published in:
Science Translational Medicine

More Publications

May 19, 2023

Nature Reviews Neurology

Global synergistic actions to improve brain health for human development

April 20, 2023

Nature Mental Health

Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

February 13, 2023

Frontiers in Aging Neuroscience

Machine learning within the Parkinson’s progression markers initiative: Review of the current state of affairs

September 9, 2022

Sensors

Deep Learning for Daily Monitoring of Parkinson’s Disease Outside the Clinic Using Wearable Sensors

June 1, 2022

JAMA Network Open

Association of Posttraumatic Stress Disorder With Accelerated Cognitive Decline in Middle-aged Women

March 23, 2022

Journal of Neurotrauma

A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury